Staff profiles
Yoshihiro KanekoVisitor
Qualifications
- MS, Geophysics
- PhD, Geophysics
- BS, Applied Geophysics
Areas of expertise
- Geophysics: Seismology
- Geophysics: Crustal deformation and neotectonics
- Geophysics: Seismic wave propagation
- Geophysics: Subduction zones
- Geophysics: Modelling earthquake source processes
- Geophysics: Earthquake hazard modelling
- Geophysics: Earthquake strong-motion
- Geophysics: Finite element analysis
- Geophysics: Stress triggering
- Geophysics: Numerical Methods
- Geophysics: Code development
- Geophysics: Earthquake Mechanics
Major Publications
See all publications
- Calibrating the marine turbidite palaeoseismometer using the 2016 Kaikoura earthquake, Nature Geoscience 14(3): p. 161-167. DOI: 10.1038/s41561-021-00692-6. p. 161-167
- Coseismic slickenlines record the emergence of multiple rupture fronts during a surface-breaking earthquake, Tectonophysics 808: article 228834. DOI: 10.1016/j.tecto.2021.228834. article 228834
- Records of extreme ground accelerations during the 2011 Christchurch earthquake sequence contaminated by a nonlinear, soil-structured interaction, Bulletin of the Seismological Society of America 111(2): p. 704-722. DOI: 10.1785/0120200337. p. 704-722
- Inferring the evolution of a large earthquake from its acoustic impacts on the ionosphere, AGU Advances 2(2): e2020AV000260. DOI: 10.1029/2020AV000260. e2020AV000260
- Dynamic triggering of earthquakes in the North Island of New Zealand following the 2016 Mw 7.8 Kaikoura earthquake, Earth and Planetary Science Letters 557: article 116723. DOI: 10.1016/j.epsl.2020.116723. article 116723
- Stress sensitivity of instantaneous dynamic triggering of shallow slow slip events, Journal of Geophysical Research. Solid Earth 125(6): e2019JB019178. DOI: 10.1029/2019JB019178. e2019JB019178
- Sea surface gravity waves excited by dynamic ground motions from large regional earthquakes, Seismological Research Letters 91(4): p. 2268-2277. DOI: 10.1785/0220190267. p. 2268-2277
- New opportunities to study earthquake precursors, Seismological Research Letters 91(5): p. 2444-2447. DOI: 10.1785/0220200089. p. 2444-2447
- Effects of low-velocity fault damage zones on long-term earthquake behaviors on mature strike-slip faults, Journal of Geophysical Research. Solid Earth 125(8): e2020JB019587. DOI: 10.1029/2020JB019587. e2020JB019587
- On-fault geological fingerprint of earthquake rupture direction, Journal of Geophysical Research. Solid Earth 125(9): e2020JB019863. DOI: 10.1029/2020JB019863. e2020JB019863
- An automated workflow for adjoint tomography : waveform misfits and synthetic inversions for the North Island, New Zealand, Geophysical Journal International 223(3): p. 1461-1480. DOI: 10.1093/gji/ggaa381. p. 1461-1480
- Source process for two enigmatic repeating vertical-T CLVD tsunami earthquakes in the Kermadec Ridge, Geophysical Research Letters 47(16): e2020GL087805. DOI: 10.1029/2020GL087805. e2020GL087805
- Ultra-long duration of seismic ground motion arising from a thick, low velocity sedimentary wedge, Journal of Geophysical Research. Solid Earth 124(10): p. 10347-10359. DOI: 10.1029/2019JB017795. p. 10347-10359
- Curved slickenlines preserve direction of rupture propagation, Geology 47(9): p. 838-842. DOI: 10.1130/G46563.1. p. 838-842
- Extreme accelerations during earthquakes caused by elastic flapping effect, Scientific Reports 9: article 1117. DOI: 10.1038/s41598-018-37716-y. article 1117
- Three-dimensional modeling of spontaneous and triggered slow-slip events at the Hikurangi subduction zone, New Zealand, Journal of Geophysical Research. Solid Earth 124(12): p. 13250-13268. DOI: 10.1029/2019JB018190. p. 13250-13268
- Landslides triggered by the 14 November 2016 Mw 7.8 Kaikoura earthquake, New Zealand, Bulletin of the Seismological Society of America 108(3B): p. 1630-1648. DOI: 10.1785/0120170305. p. 1630-1648
- Dynamic rupture simulation reproduces spontaneous multifault rupture and arrest during the 2016 Mw 7.9 Kaikoura earthquake, Geophysical Research Letters 45(23): p. 12,875-12,883. DOI: 10.1029/2018GL080550. p. 12,875-12,883
- Using tsunami waves reflected at the coast to improve offshore earthquake source parameters : application to the 2016 Mw 7.1 Te Araroa earthquake, New Zealand, Journal of Geophysical Research. Solid Earth 123(10): p. 8767-8779. DOI: 10.1029/2018JB015832. p. 8767-8779
- Earthquake nucleation and fault slip complexity in the lower crust of central Alaska, Nature Geoscience 11: p. 536-541. DOI: 10.1038/s41561-018-0144-2. p. 536-541
- Directly estimating earthquake rupture area using second moments to reduce the uncertainty in stress drop, Geophysical Journal International 214(3): p. 2224-2235. DOI: 10.1093/gji/ggy201. p. 2224-2235
- Numerical modeling of dynamically triggered shallow slow slip events in New Zealand by the 2016 Mw 7.8 Kaikoura earthquake, Geophysical Research Letters 45(10): p. 4764-4772. DOI: 10.1002/2018GL077879. p. 4764-4772
- Simple physical model for the probability of a subduction-zone earthquake following slow slip events and earthquakes : application to the Hikurangi megathrust, New Zealand, Geophysical Research Letters 45(9): p. 3932-3941. DOI: 10.1029/2018GL077641. p. 3932-3941
- A suite of exercises for verifying dynamic earthquake rupture codes, Seismological Research Letters 89(3): p. 1146-1162. DOI: 10.1785/0220170222. p. 1146-1162
- Foreshocks and delayed triggering of the 2016 MW7.1 Te Araroa earthquake and dynamic reinvigoration of its aftershock sequence by the MW7.8 Kaikoura earthquake, New Zealand, Earth and Planetary Science Letters 482: p. 265-276. DOI: 10.1016/j.epsl.2017.11.020. p. 265-276
- The 2016 Kaikoura, New Zealand, earthquake : preliminary seismological report, Seismological Research Letters 88(3): p. 727-739. DOI: 10.1785/0220170018. p. 727-739
- The 2016 Kaikoura earthquake revealed by kinematic source inversion and seismic wavefield simulations : slow rupture propagation on a geometrically complex crustal fault network, Geophysical Research Letters 44(22): p. 11320-11328. DOI: 10.1002/2017GL075301. p. 11320-11328
- Nucleation process of magnitude 2 repeating earthquakes on the San Andreas Fault predicted by rate-and-state fault models with SAFOD drill core data, Geophysical Research Letters 44(1): p. 162-173. DOI: 10.1002/2016GL071569. p. 162-173
- Large-scale dynamic triggering of shallow slow slip enhanced by overlying sedimentary wedge, Nature Geoscience 10(10): p. 765-770. DOI: 10.1038/ngeo3021. p. 765-770
- Slip-weakening distance and energy budget inferred from near-fault ground deformation during the 2016 Mw 7.8 Kaikoura earthquake, Geophysical Research Letters 44(10): p. 4765-4773. DOI: 10.1002/2017GL073681. p. 4765-4773
- The onset of laboratory earthquakes explained by nucleating rupture on a rate-and-state fault, Journal of Geophysical Research. Solid Earth 121(8): p. 6071-6091. DOI: 10.1002/2016JB013143. p. 6071-6091
- Dynamic triggering of creep events in the Salton Trough, Southern California by regional M >/= 5.4 earthquakes constrained by geodetic observations and numerical simulations, Earth and Planetary Science Letters 427: p. 1-10. DOI: 10.1016/j.epsl.2015.06.044. p. 1-10
- Variability of seismic source spectra, estimated stress drop and radiated energy, derived from cohesive-zone models of symmetrical and asymmetrical circular and elliptical ruptures, Journal of Geophysical Research. Solid Earth 120(2): p. 1053-1079. DOI: 10.1002/2014JB011642. p. 1053-1079
- InSAR imaging of displacement on flexural-slip faults triggered by the 2013 Mw 6.6 Lake Grassmere earthquake, central New Zealand, Geophysical Research Letters 42(3): p. 781-788. DOI: 10.1002/2014GL062767. p. 781-788
- Seismic source spectra and estimated stress drop derived from cohesive-zone models of circular subshear rupture, Geophysical Journal International 197(2): p. 1002-1015. DOI: 10.1093/gji/ggu030. p. 1002-1015
- Interseismic deformation and creep along the central section of the North Anatolian fault (Turkey) : InSAR observations and implications for rate-and-state friction properties, Journal of Geophysical Research 118(1): p. 316-331. DOI: 10.1029/2012JB009661. p. 316-331
- Kinematic inversion of physically plausible earthquake source models obtained from dynamic rupture simulations, Bulletin of the Seismological Society of America 103(5): p. 2621-2644. DOI: 10.1785/0120120358. p. 2621-2644
- Episodic fault creep events in California controlled by shallow frictional heterogeneity, Nature Geoscience 6(7): p. 566- 570. DOI: 10.1038/NGEO1835. p. 566- 570
- Verifying computational method for predicting extreme ground motion, Seismological Research Letters 82(5): p. 638-644. DOI: 10.1785/gssrl.82.5.638. p. 638-644
- Spectral-element simulations of long-term fault slip : effect of low-rigidity layers on earthquake-cycle dynamics, Journal of Geophysical Research. Solid Earth 116(10): B10313. DOI: 10.1029/2011JB008395. B10313
- Shallow slip deficit due to large strike-slip earthquakes in dynamic rupture simulations with elasto-plastic off-fault response, Geophysical Journal International 186(3): p. 1389-1403. DOI: 10.1111/j.1365-246X.2011.05117.x. p. 1389-1403
- A mechanism for preseismic steady rupture fronts observed in laboratory experiments, Geophysical Research Letters 38: L21307. DOI: 10.1029/2011GL049953. L21307
- Supershear transition due to a free surface in 3-D simulations of spontaneous dynamic rupture on vertical strike-slip faults, Tectonophysics 493(3/4): p. 272-284. DOI: 10.1016/j.tecto.2010.06.015. p. 272-284
- Towards inferring earthquake patterns from geodetic observations of interseismic coupling, Nature Geoscience 3(5): p. 363-369. DOI: 10.1038/NGEO843. p. 363-369
- The SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise, Seismological Research Letters 80(1): p. 119-126. DOI: 10.1785/gssrl.80.1.119. p. 119-126
- Spectral element modeling of spontaneous earthquake rupture on rate and state faults : effect of velocity-strengthening friction at shallow depths, Journal of Geophysical Research. Solid Earth 113(9): B09317. DOI: 10.1029/2007JB005553. B09317
- Variability of earthquake nucleation in continuum models of rate-and-state faults and implications for aftershock rates, Journal of Geophysical Research. Solid Earth 113(12): B12312. DOI: 10.1029/2007JB005154. B12312